The Max Problem for Genetic Programming - Highlighting an Adverse Interaction between the Crossover Operator and a Restriction on Tree Depth
نویسندگان
چکیده
The Crossover operator is common to most implementations of Genetic Programming (GP). Another, usually unavoidable, factor is some form of restriction on the size of trees in the GP population. This paper concentrates on the interaction between the Crossover operator and a restriction on tree depth demonstrated by the MAX problem, which involves returning the largest possible value for given function and terminal sets. Some characteristics and inadequacies of Crossover in`normal' use are highlighted and discussed. Subtree discovery and movement takes place mostly near the leaf nodes, with nodes near the root left untouched. Diversity drops quickly to zero near the root node in the tree population. GP is then unable to creatè`tter' trees via the crossover operator, leaving a Mutation operator as the only common, but ineeective, route to discovery of``tter' trees.
منابع مشابه
An Adverse Interaction between the Crossover Operator and a Restriction on Tree Depth
The Crossover operator is common to most implementations of Genetic Programming (GP). Another, usually unavoidable, factor is some form of restriction on the size of trees in the GP population. This paper concentrates on the interaction between the Crossover operator and a restriction on tree depth demonstrated by the MAX problem , which involves returning the largest possible value for given f...
متن کاملAN EFFICIENT CROSSOVER OPERATOR FOR TRAVELING SALESMAN PROBLEM
Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several crossover operators have been proposed for solving the travelling salesman problem (TSP) in the literature. These operators have paid less attention to the characteristics of the traveling salesman problem, and majority of these operators can only generate feasible solutions. In this paper, a crossover ...
متن کاملEstimation of Bayesian Network for Program Generation
Genetic Programming (GP) is a powerful optimization algorithm, which employs crossover for a main genetic operator. Because a crossover operator in GP selects sub-trees randomly, the building blocks may be destroyed by crossover. Recently, algorithms called PMBGPs (Probabilistic Model Building GP) based on probabilistic techniques have been proposed in order to improve the problem above. We pro...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملA Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study
A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...
متن کامل